

Lucito Cataquiz
John Petrovic
Carole Read
JoAnn Milliken

Energy Efficiency and Renewable Energy
Hydrogen, Fuel Cells and Infrastructure
Technologies Program
Hydrogen Storage Team
FORS 5G-086
202-586-2480

Hydrogen Storage Technical Goal & Objectives

Goal: Develop and demonstrate viable hydrogen storage technologies for transportation and stationary applications.

Objectives – **Develop and verify:**

- On-board hydrogen storage systems achieving:
 - > 1.5 kWh/kg (4.5 wt%), 1.2 kWh/L, and \$6/kWh by 2005
 - > 2 kWh/kg (6 wt%), 1.5 kWh/L, and \$4/kWh by 2010
 - ➤ 3 kWh/kg (9 wt%), 2.7 kWh/L, and \$2/kWh by 2015
- Low cost, off-board hydrogen storage systems, as required for hydrogen infrastructure needs to support transportation, stationary and portable power markets by 2015.
- Vehicle interface technologies for fueling on-board hydrogen storage systems by 2015.

Targets On-Board H₂ Storage Systems

Storage Parameter	Units	2005	2010	2015
Specific energy	kWh/kg	1.5	2.0	3.0
Energy density	kWh/L	1.2	1.5	2.7
Storage system cost	\$/kWh	6	4	2
Cycle life (1/4 tank to full)	Cycles	500	1,000	1,500
Refueling rate	kg H ₂ /min	0.5	1.5	2
Loss of usable H ₂	(g/hr)/kg H ₂ stored	1	.1	0.05

ProjectsHydrogen Storage Systems

Complex Metal Hydrides (UTRC, SNLL, U.Hawaii, FSEC)

- NaAlH₄ System
 Integration
- Hydride Materials R&D
- Kinetics/MechanisticStudies

Chemical Hydrides (2004)

- Aminoborane (FSEC)
- NaBH₄ Process
 Chemistry (TBD)
- Life-Cycle Analyses
- Other Hydrides

Funding:

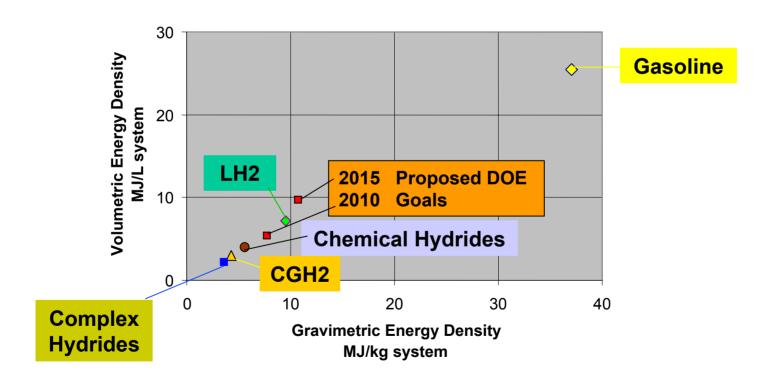
FY03 Enacted \$11M FY04 Request \$30M

Standard
Test
Protocols &
Facilities
(SwRI)

Advanced Concepts (2004)

-TBD

Compressed/Liquid Tanks (Quantum, JHU, LLNL, INEEL, Ergenics)


- 5,000/10,000 psi Tanks
- Semi-Conformal System
- Tank Liners/OverwrapMaterials
- Insulated Pressure Vessels
- Unusual Shapes

Carbon (NREL, CalTech, SRTC)

- Kinetics/MechanisticStudies
- Process R&D
- Structure/PropertyAnalyses

Status vs Targets On-Board H₂ Storage Systems

No current material or technology meets DOE/FreedomCAR targets.

Barriers Hydrogen Storage Systems

- Cost
- Weight & volume
- Efficiency
- Durability
- Refueling time
- Codes & standards
- Life-cycle & efficiency analyses

Planning Hydrogen Storage Systems

Identify R&D Priorities

H₂ Storage Materials Workshop Compressed/Liquid H₂ Workshop H₂ Storage "Think Tank" Meeting

Issue "Grand Challenge"
Build Upon Existing Work

Create Virtual Centers
Initiate New Materials R&D
Complete Compressed/Liquid H2 R&D

Workshop Hydrogen Storage Materials

Conclusions & Recommendations

Complex Metal Hydrides

- Continue fundamental studies on NaAlH₄ as model system
- Identify other hydride materials that have greater storage capacity

Chemical Hydrides

- Identify improved/new process chemistry for regeneration
- Complete full lifecycle analysis of NaBH₄

Carbon

- Conduct definitive experiments to show where and how hydrogen is stored in nanotubes
- Better understand the science to engineer carbon for hydrogen storage

Advanced Concepts

• Discuss advanced storage concepts further to refine recommendations and to resolve controversial aspects

Workshop Compressed/Liquid H₂

Conclusions & Recommendations

Safety

Understand failure modes

Economics of fibers and resins

New materials

Smart tanks

Sensors to detect tank health

Advanced concepts

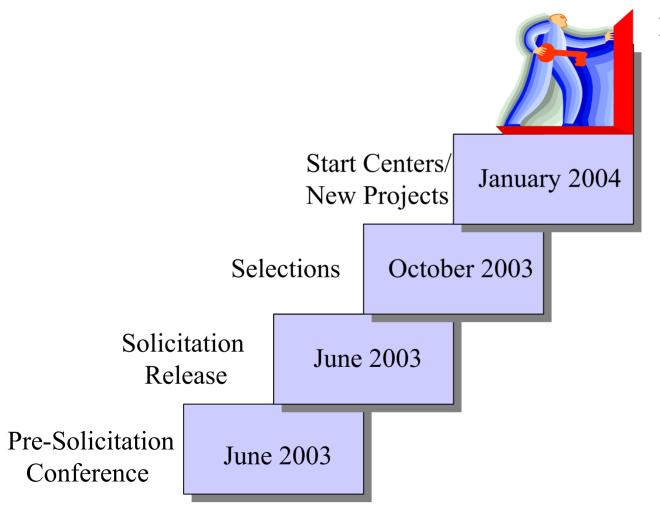
High pressure conformable tank structures

Manufacturing processes

High volume production techniques

Hydrogen Storage "Think Tank" Meeting

Participants:


- Four Nobel Laureates
- Seven award-winning scientists (ACS, APS, and NSF awards; Presidential Young Investigators)

Conclusions/Recommendations

- R&D of Materials:
 - > Nano-Materials
 - ➤ High Surface Area Materials, including Carbons
 - > Synthetic Metals
 - > Chemical and Metal Hydrides, Clathrates
- Issue a "Grand Challenge"
 - Educate the scientific community
 - Establish integrated teams (virtual centers)
 - Explore novel concepts through single investigator projects

Next Steps

National H₂ Storage R&D Project

Hydrogen Storage Key Milestones

Milestone	Description	Quarter (Calendar Year)
6	Complete construction of reversible solid- state materials test facility	4Q, 2004
8	Go/No-Go decision on carbon nanotubes	4Q, 2005
4	Go/No-Go decision on R&D of liquid and compressed tanks	4Q, 2006